
September 24, 2012
Fall 2012

Comp 510-Algorithms Janeth Moran Cervantes
Assignment 2

Chapter 16: Greedy Algorithms

Activity Selection Problem

16.1-1) Give a dynamic-programming algorithm for the activity-selection problem, based on recur-
rence (16.2). Have your algorithm compute the sizes c[i,j] as defined above and also produce
the maximum-size subset of mutually compatible activities. Assume that the inputs have
been sorted as in equation (16.1). Compare the running time of your solution to the running
time of GREEDY-ACTIVITY-SELECTOR.

Solution: Let where Sij be the interval between activity ai and aj exclusive. The following
algorithm builds the table for the activity selection problem where s and f are arrays of
length n containing the start and finish times, respectively, for the n different activities.

BUILD-ACTIVITY-TABLE(s,f)

n = s.length

initialize c, an nxn array

for j=0 to rows-1

for i=j to 0

//base case

c[j]j] = -1

c[i][j] = 0

//general case

if (j-1)>1

//for every a_k in S_ij (Compute c[i][j] and store activity number k)

for k=i+1 to j-1

if f[i] <= s[k] AND f[k]<= s[j] //if activity fits in interval

if c[i][j]<(c[i][k]+c[k][j] + 1) //update max num activities

c[i][j] = c[i][k] + c[k][j] + 1

c[j][i] = k //store activity number

return c

The return value, c, is an nxn array. BUILD-ACTIVITY-TABLE(s,f) fills in the values of c
above the diagonal and saves the k values below the diagonal. It takes O(n2) to fill in the
values above the diagonal but for each c[i][j], we must compute for each ak in Sij . This is
shown in the inner loop. Just like in the MATRIX-CHAIN-MULTIPLY, the total running
time is O(n2).

The optimal solution is then built from the table using the following algorithm:

OPTIMAL-ACTIVITY-SELECTION(c,s,f, i,j)

return {a_i} U SUBOPTIMAL-ACTIVITY-SELECTION(s,f,i,j) U {a_j}

1

September 24, 2012
Fall 2012

Comp 510-Algorithms Janeth Moran Cervantes
Assignment 2

where [i, j] is the index of the cell above the diagonal of c containing the largest value, number
of selected scheduled activities. (This can be returned by BUILD-ACTIVITY-TABLE(s,f) as
well but has been omitted for simplicity)

SUBOPTIMAL-ACTIVITY-SELECTION(c,s,f,i,j)

if i<j AND j<a.length //if time interval is positive

k=c[i][j]

if i<k AND k<j //kth activity was added

return SUBOPTIMAL-ACTIVITY-SELECTION(c,s,f, i, k) U {a_k} U

SUBOPTIMAL-ACTIVITY-SELECTION(c,s,f, k, j)

Note that s, and f together form the list of activities where activity ai has starting time
si and final time fi. The dynamic-programming algorithm runs in O(n2) while the greedy
algorithm runs in O(n). Therefore, the GREEDY-ACTIVITY-SELECTOR is a much better
solution to the activity-selection problem.

16.1-2 Suppose that instead of always selecting the first activity to finish, we instead select the
last activity to start that in compatible with all previously selected activities. Describe how
this approach is a greedy algorithm, and prove that it yields an optimal solution.

Solution:
Let n be the total number of activites, a1, a2, ..., an.

GREEDY-ACTIVITY-SELECTOR-JMC(s,f)

n = s.length

A = {a_n}

for m=n-1 to 1

if f[m]<=s[k] //greedy step

A={a_m} U A

k=m

return A

where n is the number of activities,
s is an n array and s[k] contains the starting time of ak,
Assume s is monotonically increasing sorted array,
f is an n array and f[k] contains the finish time of ak,

This algorithm iterates through the activities starting from the activity with the latest starting
time. If the current activity has not finished before the last activity has started, then that
activity is skipped and not added to optimal solution. However, if the candidate activity, ak,
does finish before the last one starts, then that activity is added to the solution. This is the
greedy step and we know that the first activity with the latest starting time is going to be
chosen before all the other ones because the array of activities is sorted in increasing order.

In order for this approach to yield an optimal solution, it is sufficient to prove that any
activity with the latest starting time belongs to a maximum-size subset of mutually compatible
activities of Sk.

Claim: Consider any nonempty subproblem Sk and let am be an activity in Sk

with the last starting time. Then am is included in some maximum-size subset of

2

September 24, 2012
Fall 2012

Comp 510-Algorithms Janeth Moran Cervantes
Assignment 2

mutually compatible activities of Sk.

Proof: Let ai be an activity with starting time si and final time fi. Let
{a1, a2, ..., an} be a set of activities monotonically increasing based on their start-
ing time. That is, s1 ≤ s2 ≤ s3 ≤ . . . ≤ sn. Let Ak be a maximum-size subset of
mutually compatible activities Sk, and let aj be the activity in Ak with the latest
starting time.
Case 1: aj = am
Then, since aj ∈ Ak, aj is in some maximum-size subset of mutually compatible
activities of Sk �

Case 2: aj 6= am
Then set A′k = Ak − {am} + {aj}. Since Ak is some maximum-size subset of mu-
tually compatible activities in Sk, then f1 ≤ f2 ≤ f3 ≤ ... ≤ sm. Since aj and
am are both activities with the latest starting time in Sk, sm = sj .Then we have
that f1 ≤ f2 ≤ f3, ... ≤ sm = sj and |A′k| = |Ak|. Necessarily, A′k must be a
maximum-size subset of mutually compatible activities. Since aj ∈ A′k, aj is in
some maximum size subset of mutually compatible activities of Sk �

16.1-3 Suppose that we have a set of activities to schedule among a large number of lecture halls,
where any activity can take place in any lecture hall. We wish to schedule all the activities
using as few lecture halls as possible. Give an efficient greedy algorithm to determine which
activity should use which lecture hall.

Solution: This problem can be solved like the activity-selection problem with one single
lecture hall with the exeption that when an activity cannot be scheduled in the the first
lecture hall, it should be scheduled in the second. If it cannot be scheduled in lecture 2,
schedule in lecture 3. If it cannot be scheduled in lecture 3, schedule in lecture 4, so on and
so forth until it is scheduled in some lecture hall. For all activities, if an activity cannot be
scheduled in the first lecture, it must be attempted to be scheduled in the order lecture 2,
lecture 3,

16-2.1 Prove that the fractional knapsack problem has the greedy-choice property.

Solution
Proof :
Let n be the number of items, each item i ∈ {1, 2, ..., n}, with value vi and weight wi. Let
W be the total weight the knapsack can hold. The task is to fill the knapsack with as many
items as possible while maximizing the total knapsack value. An item does not need to be
completely added. That is, a fraction of a particular item may be added to the knapsack
if it maximizes the total value. To do this, first compute the value per pound vi/wi. Sort
the items in ascending order based on the value per pound. Let item j be the item with the
largest value per pound.

Case 1: If W = wj , then item j fills up the knapsack perfectly and we are done.

Case 2: If W < wj , then the whole item does not fit into the knapsack, in which case, only
add as much of item j as can fit into the knapsack and we are done.

Case 3: Otherwise, W > wj . Add item wj to the knapsack. The knapsack can now take
up to W − wj additional pounds. Item j was the item with the most value per pound, so
we necessarily choose this item in a greedy manner to maximize the knapsack value. This

3

September 24, 2012
Fall 2012

Comp 510-Algorithms Janeth Moran Cervantes
Assignment 2

leaves the following subproblem: fractional knapsack with maximum weight of W − wj and
n − 1 objects to choose from. Note that item j was chosen without considering results from
subproblems. Therefore the fractional knapsack problem has the greedy-choice property. �

16.2-2 Give a dynamic-programming solution to the 0-1 knapsack problem that runs in O(nW)
time, where n is the number of items and W is the maximum weight of items that the thief
can put in his knapsack.

Solution:

KNAPSACK(w,v, W, n)

\\initialization

for i=1 to n //knapsack value is 0 if knapsack weight is 0

B[i,0]=0

for j=0 to W //knapsack value is 0 if there are 0 items to choose from

B[0,j] = 0

for i=1 to n

for j=0 to W

if w[i]<= j // item i can be part of the solution

if v[i] + B[i-1, j-w[i]] > B[i-1, w] //(1)

B[i,j]=v[i] + B[i-1, j-w[i]]

else //(2)

B[i,j]=B[i-1,w]

else //item does not fit

B[i,j]=B[i-1,w]

w and v are arraya of length n
W is the maximum weight that the knapsack can hold B is an (w+1) x (n+1) array where
B[i][j] is the maximum value for a knapsack of weight j with the first i items to choose from.

(1) for current weight j, look at the the knapsack of max weight j-1. For current item i, if
the item is added to the knapsack, we must look at the knapsack with i-1 items and weight
j-w[i]. The value of the knapsack would be the value of the new item plus the max value for
knapsack with i-1 items and j-w[i] weight, v[i] + B[i-1, j-w[i]]. If adding this new item yeilds
a larger knapsack total value, then “add” the item by updating the maximum value (B[i,j]
= v[i]+ B[i-1, j-w[i]])

(2) if adding this new item i does not yield a larger knapsack total value, then don’t add the
item. So, the total value of the knapsack is still the value as if you only had i-1 items to
choose from. Thus, B[i,j]=B[i-1, j]

We can obtain the list of items from array B using the following algorithm:

KNAPSACK-ITEMS(v,w,B)

i=n

k=W

while i>0 AND k>0

if B[i,k] != B[i-1,k] //(3)

add i to the items in the knapsack

k=k-w[i]

4

September 24, 2012
Fall 2012

Comp 510-Algorithms Janeth Moran Cervantes
Assignment 2

i--

look at the last entry in B with item i, and weight W . If the knapsack value changed from
i-1 to i items, then item i was added and we now look at the suboptimal knapsack of weight
k-w[i]. Otherwise, item i was not added to the knapsack and we simply look at the optimal
knapsack with the same weight but i-1 items.

In the KNAPSACK algorithm, there are two for loops. The inner loop iterates for each item
while the inner loop iterates for each weight. Since there are n items and the maximum
knapsack weight is W , the algorithms runs O(nW). �

A task-scheduling problem as a matroid

16.5-1 Solve the instance of the scheduling problem given in Figure 16.7, but with each penalty
wi replaced by 80− wi.

Solution:
List of activities where ai is activity i with deadline di and penalty weight wi:
ai 1 2 3 4 5 6 7

di 4 2 4 3 1 4 6
wi 10 20 30 40 50 60 70

Execution where aji is activity i with deadline di = j:

ti 0 1 2 3 4 5 6

a41

a22 a41

a22 a41 a43

a22 a34 a41 a43

a15 a34 a41 a43 a22

a15 a34 a46 a43 a22 a41

a15 a34 a46 a43 a67 a22 a41

Note that at t=4, a5 took the place of a2 because a5 has a higher penalty value than all the
current activities, so a5 replaces a2, the activity with the smallest penalty value (wi = 20).
Likewise, at t=5 a6 replaces a1, the activity with the smallest penalty value (wi = 10) with
early arrival. Early activities are in monotonically increasing order.

The final optimal schedule is: {a5, a4, a6, a3, a7, a2, a1}
which has a total penalty incurred of w2 + w1 = 30

16.2 Suppose you are given a set S = {a1, a2, ..., an} of tasks, where task ai requires pi units of
processing time to complete, once it has started. You have one computer on which to run
these tasks, and the computer can run only one task at a time. Let ci be the completion time
of task ai, that is, the time at which task ai completes processing. Your goal is to minimize

the average completion time, that is, to minimize 1
n

n∑
i=1

ci.

5

September 24, 2012
Fall 2012

Comp 510-Algorithms Janeth Moran Cervantes
Assignment 2

(a) Give an algorithm that schedules the tasks so as to minimize the average completion
time. Each task must run non-preemptively, that is, once task ai starts, it must run
continuously for pi units of time. Prove that your algorithm minimizes the average com-
pletion time, and state the running time of your algorithm.

Solution: An activity’s completion time, ci, is dependent on the previously sheduled
activities. If ai has a short processing time pi and it gets scheduled after activities with
longer processing time, ci will be larger than it could have been if it were scheduled
before. Thus, a greedy algorithm for scheduling activities a1, a2, ..., an requires to first
sort the activities in increasing order based on their processing time pi and schedule the
activities in order starting with activity with the shortest processing time.

Sorting the activities can be done in O(nlgn) while scheduling the activities in done in
O(n) since it would only require to transverse the array of sorted activities. The total
running time is thus O(nlgn).

Proof:
To prove that scheduling the activities in ascending order based on their processing
time pi, yields a minimized average completion time, it is sufficient to prove that the
average completion time is at its minimum when an activity of shorted processing time
gets scheduled before an activity with longer processing time. Let S, ai, pi and ci be as
defined as in the problem description. Let us assume that we have scheduled all activities
in such a way that the average completion time is minimimal with the exception of the
last two activities ai and aj with i ≤ j. The the average completion time is given by:

1

n

n∑
k=1

ck =
1

n
· cm1 + ... +

1

n
· cmn−2 +

1

n
· ci +

1

n
· cj

where {m1,m2, ...,mn} = {1, 2, ..., n} − {i, j}

If ai gets scheduled first and aj second, we have that

ci = pi +

n−2∑
k=1

pmk

cj = pi + pj +
n−2∑
k=1

pmk

If aj gets scheduled first and ai second, we have that

c′j = pj +

n−2∑
k=1

pmk

c′i = pj + pi +
n−2∑
k=1

pmk

6

September 24, 2012
Fall 2012

Comp 510-Algorithms Janeth Moran Cervantes
Assignment 2

execution ai, aj vs execution aj , ai
ci + cj c′j + c′i

pi +

n−2∑
k=1

pmk︸ ︷︷ ︸
ci

+ pi + pj +

n−2∑
k=1

pmk︸ ︷︷ ︸
c′j

≤ pj +

n−2∑
k=1

pmk︸ ︷︷ ︸
cj

+ pj + pi +

n−2∑
k=1

pmk︸ ︷︷ ︸
c′i

cm1 + ... + cmn−2 + ci + cj ≤ cm1 + ... + cmn−2 + c′i + c′j
1
n [cm1 + ... + cmn−2 + ci + cj] ≤ 1

n [cm1 + ... + cmn−2 + c′i + c′j]

(1
n

n−2∑
k=1

cmk
) + 1

n(ci + cj) ≤ (1
n

n−2∑
k=1

cmk
) + 1

n(c′j + c′i)

Thus, scheduling ai before aj yields a smaller average completion time. Since aj must
be scheduled last, we are left with the subproblem where we have the set of activities,
S′ = {a1, a2, ..., an} − {aj} where for all ai ∈ S′, pi ≤ pj . By the same argument used
in scheduling aj after ai, the activity scheduled right before aj must have a shorter
processing time. That is, if ak gets scheduled before aj , then pk ≤ pj . We repeat
this process until there are no activities left. Thus, the activities must necessarily be
scheduled in ascending order based on their processing time in order to minimize the
processing time. �

(b) Suppose now that the tasks are not all available at once. That is, each task cannot start
until its release time ri. Suppose also that we allow preemption, so that a task can be
suspended and restarted at a later time. Give an algorithm that schedules the tasks
so as to minimize the average completion time in this new scenario. Prove that your
algorithm minimizes the average completion time, and state the running time of your
algorithm.

Solution: As was proven in the previous subproblem, the average completion time is
minimized when the activities are scheduled in ascending order. So, given that preemp-
tion is allowed, when an activity arrives, it must be inserted into its proper location
within the sorted list of activities while scheduling continues to be done in asceding or-
der of activity processing time. The initial sort will run in O(nlgn). The worst case of
insertion into a sorted array is O(n) for each new activity arrival (runs O(n∗n) = O(n2))
and the best case is O(1) for each new activity arrival (runs O(n)). Thus, the running
time of this algorithm is in the worst case O(nlgn) + O(n2) = O(n2) and in the best
case O(nlgn) + O(n) = O(nlgn)

References

[1] Cormen, Thomas. H., Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to
Algorithms, Third Edition. MIT Press, Cambridge, MA, 2009.

[2] http://www.cse.unl.edu/∼goddard/Courses/CSCE310J/Lectures/Lecture8-
DynamicProgramming.pdf

7

