
November 5, 2012
Fall 2012

Comp 510-Algorithms Janeth Moran Cervantes
Assignment 5

Chapter 19: Binomial Heaps

Chapter 22: Elementary Graph Algorithms

19-2) Chapter 23 presents two algorithms to solve the problem of finding a minimum spanning
tree of an undirected graph. Here, we shall see how binomial heaps can be used to devise a
different minimum-spanning-tree algorithm.

We are given a connected, undirected graph G = (V,E) with a weight function w : E → R.
We call w(u, v) the weight of edge (u, v). We wish to find a minimum spanning tree for G:
an acyclic subset T ⊆ E that connects all the vertices in V and whose total weight

w(T ) =
∑

(u,v)∈T
w(u, v)) is minimized.

The following pseudocode, which can be proven correct using techniques from Section 23.1,
constructs a minimum spanning tree T . It maintains a partition {Vi} of the vertices of V
and, with each set Vi, a set

Ei ⊆ {(u, v) : u ∈ Vi or v ∈ Vi}
of edges incident on vertices in Vi.

MST(G)
1 T ← ∅
2 for each ver tex vi ∈ V [G]
3 do Vi ← {vi}
4 Ei← {(vi, v) ∈ E[G]}
5 while the re i s more than one s e t V i
6 do choose any s e t Vi

7 ex t r a c t the minimum−weight edge (u, v) from Ei

8 assume without l o s s o f g e n e r a l i t y that u Vi and v ∈ Vj

9 i f i 6= j
10 then T ← T ∪ {(u, v)}
11 Vi ← Vi ∪ Vj , d e s t roy ing Vj

12 Ei ← Ei ∪ Ej

Describe how to implement this algorithm using binomial heaps to manage the vertex and
edge sets. Do you need to change the representation of a binomial heap? Do you need to
add operations beyond the mergeable-heap operations given in Figure 19.1? Give the running
time of your implementation.

Solution:
first for loop

Create binomial heaps for each of the Vi’s and Ei’s. The keys of the nodes of the
Vi’s are the vertex labels and the keys of the nodes of the Ei’s is the pair u, the
adjacent vertex, and w(vi, u), the weight of the edge. (1)This takes O(2V) = O(V ).

The edges must then be inserted into the heaps. Since each of the vertices in the
graph can have at most degree |V | − 1, each Ei heap has at most |V | − 1 nodes.

1



November 5, 2012
Fall 2012

Comp 510-Algorithms Janeth Moran Cervantes
Assignment 5

BINOMIAL-HEAP-INSERT(H,x) takes O(lg n) to compute (pg 468) for a heap of
size n, which must be called to insert each of the edges. (2) This will take O(E lgV ).

while

Line 7 BINOMIAL-HEAP-EXTRACT-MIN(Ei) runs O(lgV ) and will excute a
maximum of |E| number of times =⇒ run time is O(ElgV ).
Line 8 node u must be searched within Vi, which runs in O(lgV) and will run as
many times as line 7 runs =⇒ run time is (ElgV )(lgV ) = O(ElgV ).
Line 9 runs in O(1) and runs as many times as line 7 as well.
(3)Lines 7-9 will run in O(ElgV )

Execution inside the if statement will occur |V − 1| times , O(V):
Line 10 will computes in O(1).
Line 11 BINOMIAL-HEAP-UNION(V1,V2) computes in O(lgV )
Line 12 BINOMIAL-HEAP-UNION(E1,E2) computes in O(lgE)
(4)Lines 10-12 will run in O(V + V lgV + V lgE) = O(V lgV )

The total runtime is (1)+(2)+(3)+(4) = O(V + ElgV + ElgV + V lgV ) = O(ElgV ). [2]

There is no need to change the representatin of the binomial heap. The operations used are
BINOMIAL-HEAP-INSERT(H,x), BINOMIAL-HEAP-EXTRACT-MIN(H), BINOMIAL-HEAP-
UNION(H1,H2), and BINOMIAL-HEAP-MERGE(H1,H2). The total running time: O(ElgV )

22.1-1) Given an adjacency-list representation of a directed graph, how long does it take to com-
pute the out-degree of every vertex? How long does it take to compute the in-degrees?

Solution:
An adjacency-list representation of a directed graph is an array, Adj, of size |V |, where each
entry, Adj[u], is a linked list containig all the vertices adjacent to u ∈ V .

(a) out-degree: the out-degree of a vertex u is the number of elements in the linked list
Adj[u], which takes O(E) to compute. The sum of the out-degrees of all the vertices is
|E|. To compute the out-degree for each vertex, we must count the number of out-degrees
for each, which will take O(V +E) because each edge and each vertex is referenced once.

(b) in-degree: the in-degree of a vertex u is the number of nodes pointing to it, which is the
total number of times u appears in an adjacency list. To compute the in-degree of each
vertex, we look at the Adj[u] for each vertex u and increment the in-degree of a vertex
everytime it appears in Adj[u]. Since each edge and each vertex is referenced once, this
takes O(V + E).

22.1-2) Give an adjacency-list representation for a complete binary tree on 7 vertices. Give an
equivalent adjacency-matrix representation. Assume that vertices are numbered from 1 to 7
as in a binary heap.

Solution:

2



November 5, 2012
Fall 2012

Comp 510-Algorithms Janeth Moran Cervantes
Assignment 5

Binary heap

4 5 6 7

2 3

1

Adjacency-list
1 → 2 → 3
2 → 4 → 5
3 → 6 → 7
4
5
6
7

Adjacency-matrix
1 2 3 4 5 6 7

1 0 1 1 0 0 0 0
2 0 0 0 1 1 0 0
3 0 0 0 0 0 1 1
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0

22.1-3) The transpose of a directed graph G = (V,E) is the graph GT = (V,ET ), where ET =
{(v, u) ∈ V × V : (u, v) ∈ E}. Thus, GT is G with all its edges reversed. Describe effi-
cient algorithms for computing GT from G, for both the adjacency-list and adjacency-matrix
representations of G. Analyze the running times of your algorithms.

Solution:

(a) Adjacency-matrix

G-TRANSPOSE-ADJ-MATRIX(G)

1 for i ← 2 to G . l ength
2 for j ← 1 to i−1
3 swap (G [ i , j ] G [ j , i ] )

This iterates through the entries below the diagonal of the adjacency-matrix and swaps
each entry below the diagonal with the corresponding entry above the diagonal. There
are V 2

2 entries below the diagonal. Thus, it takes O(V 2) to compute the transpose of
the adjacency-matrix.

(b) Adjacency-list

G-TRANSPOSE-ADJ-LIST(G)

1 a l l o c a t e array GT o f s i z e |V |
2 for each v ∈ V
3 for each u ∈ Adj[v] in G

4 i n s e r t v to Adj[u] in GT

5 return ← GT

The transpose of a G flips all the in-edges to out-edges (note that if the graph is undi-
rected, then fliping the order of the edges does not change the graph, thus, the matrix
is symmetric and running the transpose does not change the either the adj-list or the
adj-matrix representation of the graph). This algorithm references the edges of each
vertex for all vertices. Since each edge and each vertex is referenced once, this algorithm
computes in O(V + E).

22.1-4) Given an adjacency-list representation of a multigraph G = (V,E), describe an O(V +E)-
time algorithm to compute the adjacency-list representation of the ”equivalent” undirected
graph G′ = (V,E′), where E′ consists of the edges in E with all multiple edges between two
vertices replaced by a single edge and with all self-loops removed.

Solution:

case 1: Undirected multigraph

SIMPLIFY-UNDIRECTED-GRAPH(G)

3



November 5, 2012
Fall 2012

Comp 510-Algorithms Janeth Moran Cervantes
Assignment 5

1 for each v ∈ V
2 RADIX−SORT(Adj [ v ] ) \\ s o r t i n g and e l im ina t i ng s e l f l oops
3
4 for each v ∈ V
5 cur rent ← Adj [ v ]
6 while ( cur rent . next ( ) 6= nu l l )
7 next ← cur rent . next ( )
8 while ( next . next ( ) 6=nu l l AND next . next ( )=cur rent ) \\ sk ip dup l i c a t e edges
9 next ← next . next ( )

10 cur rent . next ( ) ← next
11 cur rent ← next

The first part goes through each Adjacency-list and sorts the entries while checking for
self loops. Each vertex is referenced once, which takes |V |. RADIX-SORT runs linearly
so it sorts Adj[v] in O(|Adj[v]|). This is done for each vertex, which is a total running
time

∑
v∈V
|Adj[v]| = |E|. Thus, the running time of the first for loop is O(V + E). The

second loop goes through each Adj[v] list and gets rid of duplicate nodes by skipping the
duplicates, breaking the linked list, and updating the pointer to the next adjacent vertex.
This requires only one pass through the whole Adjacency-list, which runs in O(V + E).
The total running time of SIMPLIFY-UNDIRECTED-GRAPH() is O(V + E).

[3]

case2: Directed multigraph
SIMPLIFY-DIRECTED-GRAPH(G)

1 GT ← G−TRANSPOSE−ADJ−LIST(G)

2 G ← G ∪GT

3 SIMPLIFY−UNDIRECTED−GRAPH(G)

For a directed multigraph, we must make sure that any edge between vertex u and v
must be in both Adj[u] and Adj[v]. The transpose flips all the directed edges and takes
O(V + E) to compute. Combining G and GT guarantees that each edge is bidirectional
(whole graph is now undirected). This takes 2|V | + |E| = O(V +E) to compute. We now
have twice as many edges. Running SIMPLIFY-UNDIRECTED-GRAPH will simplifiy
the graph as explained above, taking |V |+2|E| = O(V +E) time to compute. The total
running time of SIMPLIFY-DIRECTED-GRAPH(G) is O

(
3(V + E)

)
= O(V + E).

References

[1] Cormen, Thomas. H., Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to
Algorithms, Second Edition. MIT Press, Cambridge, MA, 2009.

[2] http://www.slideshare.net/champguru/solution-of-cormen

[3] http://www.cs.nyu.edu/courses/summer04/G22.1170-001/fin samp 04.pdf

4


