December 3, 2012 Comp 510-Algorithms Janeth Moran Cervantes
Fall 2012 Assignment 7

Chapter 23: Minimum Spanning Trees
Chapter 24: Single-Source Shortest Paths

23.1-1) Let (u,v) be a minimum-weight edge in a graph G. Show that (u,v) belongs to some
minimum spanning tree of G.

Solution:

Proof: (by contradiction)

Let (u,v) be a minimum weight edge in a connected graph G. Assume (u,v) does not belong
to a MST. Let T be a MST without the minimum weight edge (u,v). Add edge (u,v) to T.
Then we have a cycle in the graph containing (u,v).

casel: From the cycle, erase the edge, e,, with greatest weight to obtain the span-
ning tree, 7. (u,v) is obviously not removed because it is a minimum weight edge.
Then (u,v) < e = (u,v) — eq < 0. Then we have that

w(T) = w(T) + w((u,v)) — w(eq) < w(T)

This is a contradiction because T is a minimum spanning tree.

— T cannot weigh less than a MST

— w(T) = w(T)

— (u,v) must belong to some MST, T

case2: From the cycle, if there is no edge of greater size, delete an edge, eg,
of equal size as (u,v) (i.e. (u,v) = eg) to obtain a spannning tree 7. Then,
w(T) = w(T) + w((u,v)) - w(es) = w(T)

= T is a minimum spanning tree and thus, (u,v) belongs to some MST

23.1-6) Show that a graph has a unique minimum spanning tree if, for every cut of the graph,
there is a unique light edge crossing the cut. Show that the converse is not true by giving a
counterexample.

Solution:

(a) Proof: (by contradiction)
Let G = (V, E) be an undirected connected graph. Let T' be a MST for G. Assume
that G does not have a unique minimum spanning tree and assume that for every cut
of the graph, there is a unique light edge crossing the cut. Then there exists T different
from T such that w(T) = w(T). Since T # T, 3 an edge (u,v) € T : (u,v) ¢ T. Let
T} and T3 be the two trees connected by (u,v) such that 77 U T, = T. Partition T into
two forests Fl and Fg such that 151 has the same vertices as 77 and 152 has the same
vertices as Th. Let (S,V —S) be a cut dividing F} and F». Then (S, V —) must respect
A={(z,y): (z,y) € F| or (z,y) € Fy}. Necessarily, 3 an edge (i, 7) such that @ is part
of F’l and v is part of }7’2.
= (@, 0) must be a light edge crossing the cut (5,5 — V)

(u,v) is also a light edge crossing the cut (5,5 — V)

December 3, 2012 Comp 510-Algorithms Janeth Moran Cervantes
Fall 2012 Assignment 7

— Since light edges of cuts are unique, (u,?) = (u,v)
— (u,v) €T.
— (u,v) was an arbitrary edge in 7. Thus, ¥(u,v) € T, (u,v) € T
— T=T
.. G has a unique minimum spanning tree g

(b) The converse of the statement is not true. If G has a unique minimum spanning tree,
every cut does not necessarily have a unique light edge. Such is the case when we have
a cut having two or more light edges (edges have the same weight).
The graph below obviously has a unique MST. However, the cut dividing the set of
vertices {¢} and {r, s} does not have a unique light edge. Both (¢,r) and (g, s) are both
light edges of the same cut.

q 1 r

23.2-1) Kruskal’s algorithm can return different spanning trees for the same input graph G, de-

pending on how ties are broken when the edges are sorted into order. Show that for each
minimum spanning tree T of GG, there is a way to sort the edges of G in Kruskal’s algorithm
so that the algorithm returns T'.

Solution:

Let T be a MST of G. Let Ex = {ej,eq, ..., 6\\/\—1} be the edges connecting the vertices in 7.
Assume eq, e, ..., €| are listed in nondecreasing order by weight. That is, w(er) < w(eg) <
.. Lw(ey|—1). The MST-KRUSKAL(G,W) algorithm adds safe edges starting with the
lightest edge from a list of edges sorted in a nondecreasing order. Minimimum spanning trees
are not always unique. However, any MST tree, T, can be generated using MST-KRUSK AL
if we let the sorted list L = {eq, e, ..., e|V|,1} and then we insert each of the remaining edges
e; = (u,v) € G.E before the next largest e; € L. This guarantess that ej, ez, ..., and , ey
are looked at before any other safe edge with equal weight and is added to the M ST, T.
Thus, each MST in G can be generated if the edges are sorted as described above.

23.2-2) Suppose that the graph G = (V, E) is represented as an adjacency matrix. Give a simple

— =

= O © 00O UtiWwWwhih K+

implementation of Prim’s algorithm for this case that runs in O(V?) time.
Solution:

MST-PRIM(G,r)
for i =0 to |[V|—1

key[i] = o
parent [i]=NIL
key [r]=0

Create MIN-HEAP, @, for the indices of the vertices using their key wvalues
while Q # NIL
i = EXTRACT-MIN(Q)
for j =0 to |V]|—-1
if G[i][j] > 0 AND j€Q AND G[i][j] < key[j]
parent[j] = i
key[j] = G[i][J]

lines 1-4: initialize values, setting the root node with a key value of zero; runs in O(V)
line 5: creates a MIN-HEAP in O(igV)

December 3, 2012 Comp 510-Algorithms Janeth Moran Cervantes
Fall 2012 Assignment 7

line 6-11: there are two main loops, the while and for loop. Each of them iterates through
the number of vertices. Since the for loop is nected in the while loop, the total running time
here is O(V?)

line 7: will execute O(VIgV') total times

line 9: will execute O(ElgV') total times
Total running time: O(V) + O(lgV) + O(V?) = O(V?)

24.1-1) Run the Bellman-Ford algorithm on the directed graph of Figure 24.4, using vertex z as
the source. In each pass, relax edges in the same order as in the figure, and show the d and
values after each pass. Now, change the weight of edge (z,z) to 4 and run the algorithm
again, using s as the source

Solution:
(a) Bellman-Ford with source z; Figure 24.4 unmodified

e rclaxation

t x t x t
0o oo} 00 7 5 9
% _~
S S S
oo 2 7 2
2 \ 2
7
oo 0 o0 0 9
Yy z Yy z Y
(initialization) (1) (2)
t T t x
v | d T
s |2 Z
t |4 X
x| 6 y
¥y !9 S
z | 0 NIL

(3) (4)

e Check for negative weight cycles:

u,v v.d<ud+w(u,v) T/F

t,r 6<4+4+5 T
tty 9<2+8 T
t,z 0<4+—4 T
z,t 4<64 -2 T
y,r 6<9+ -3 T
¥,z 0<9+9 T
z,x 6047 T
z,8 2<0+2 T
s,t 4<2+6 T
s,y 9<247 T

December 3, 2012 Comp 510-Algorithms Janeth Moran Cervantes
Fall 2012 Assignment 7

Every edge satisfyies the triangle inequality. Therefore, the BELLMAN-FORD algo-
rithm returns TRUE, meaning that the graph does not have any negative-weight cycles.

(b) Bellman-Ford with source s; Figure 24.4 modified: w(z,z) =4

e rclaxation
t x t T t T

o0 o0 6 o0

6
; s
0 0

N

o O 7 (e.e)
Yy z z z
(initialization) (1) (2)
t t x
2 2
i s | 0 NIL
0 4 t | 2 X
\7‘ G x| 2 Z
7 2 y| 7o
z | -2 t
z Yy z

3) (4)

e Check for negative weight cycles:
w,v vd<ud+w(u,v) T/F

t,x 2<2+45 T
t,y 7T<2+8 T
t,z —2<2+4-4 T
x,t 2<24 -2 F
y,x 2<74+ -3 T
Y,z —2<T7+9 T
z,x 2<-244 T
z,s 0<—-242 T
s;,t 2<0+6 T
s,y 7047 T

The triangle inequality is not satisfied for edge (x,t). Therefore, the BELLMAN-FORD
algorithm will return FALSE, meaning that the graph contains a negative-weight cycle.

24.1-3) Given a weighted, directed graph G = (V| E) with no negative-weight cycles, let m be the
maximum over all pairs of vertices u,v € V of the minimum number of edges in a shortest
path from u to v. (Here, the shortest path is by weight, not the number of edges.) Suggest
a simple change to the Bellman-Ford algorithm that allows it to terminate in m + 1 passes,
even if m is not known in advance.

Solution:

December 3, 2012 Comp 510-Algorithms Janeth Moran Cervantes
Fall 2012 Assignment 7

The BELLMAN-FORD algorithm converges after the |V| — 1 iterations of edge relaxation,
assuming that G contains no negative-weight cycles. However, it’s possible to reach converge
before the |V| — 17 iteration. We can optimize the BELLMAN-FORD algorithm by keeping
track of any change done during the relaxations at each iteration. If the algorithm converges
at the m'" iteration, we do not know that we have reach convergence until the (m + l)th

iteration because we must check that no additional changes are made. Below is the modified
BELLMAN-FORD algorithm.

Assume that RELAX, and BELLMAN-FORD both have access to the same boolean variable
change.

RELAX(u,v,w)
1 if v.d>u.d+ w(u,v)
2 vd=ud+w(u,v)
3 VT =1
4 change = true;

BELLMAN-FORD(G,w, s)
1 INITTIALIZE—SINGLE-SOURCE(G,s) \\initialization

2 change = TRUE

3 iterations = 1;

4 while change == TRUE AND iterations <|G.V|—1 \\relaxations

5 iterations ++

6 change = FALSE

7 for each edge (u,v) € G.E

8 change = RELAX(u, v, w)

9 for each edge (u,v) € G.E \\checking for negative—weight cycles
10 if vd>ud+w.(u,v)

11 return FALSE

12 return TRUE

[2]

24-2) A d-dimensional box with dimensions (z1,z2, ..., z4) nests within another box with dimen-
sions (y1,¥2, ---, Ya) if there exists a permutation m on {1, 2, ..., d} such that 1) < Y1, Zr(2) <
Y25 s () < Yd-

a. Argue that the nesting relation is transitive.

b. Describe an efficient method to determine whether or not one d-dimensional box nests
inside another.

c. Suppose that you are given a set of n d-dimensional boxes {Bi, Ba, ..., B, }. Describe
an efficient algorithm to determine the longest sequence < B;,, Bi,, ..., B;, > of boxes
such that B;; nests within B;, | for j =1,2,...,k — 1. Express the running time of your
algorithm in terms of n and d.

Solution:

a. Let X, Y, and Z be d-dimensional boxes with dimensions (z1, z2, ..., 2q), (Y1, Y2, ---s Yd),
and (21, 22, ..., zq) respectively. Let X nest in Y and Y nest in Z. (must show X nests
in Z)

X nests in Y = 3 a permutation 7, on {1,2,...,d} such that x, ;) < y;i Vi €
{1,2,...,d}

December 3, 2012 Comp 510-Algorithms Janeth Moran Cervantes

Fall 2012

Assignment 7

RN

Y nests in Z == 3 a permutation m, on {1,2,...,d} such that y, ;) < z; Vj €
{1,2,...,d}

Let i = my(j). Then we have that x. ;) < i = Yr,(j) < 25 = Tr,(i) < 2j

Let 7., (j) = me(my(j)) for j € {1,2,...,d}

Then 3 a permutation 7. on {1,2,...,d} such that = ;) < 2z; Vj € {1,2,...,d}. There-
fore, X nests in Z

Sort the dimensions for each box in ascending order. Assuming that the first entry of X
is smaller than the first entry of Z, we can check whether X nests in Z by checking if
each x; < z;. If this fails at some point, then X does not nest in Z.

NESTED-BOXES uses RELAX-BOX to check whether a pair of boxes is nested. If a
condition is violated, then the box that violates the condition is removed from the list
of nested boxes within the RELAX-BOX algorithm.

removes the m** box if box m is not nested in box n

RELAX-BOX (B[m],B[n],d)
if B[m][d] > Bn][d]
remove B[m] from the array list

NESTED-BOXES(B][])
sort the dimensions of each of the boxes (each BJi])
sort the set of d—dimensional boxes based on their first , smallest
dimension
for i =1 to d
for each pair of box B[j], B[j+1] € {B[k]}
RELAX-BOX(B[j], Blj+1], i)

Line 1: runs in nO(d lgd)

Line 2: runs in O(lgn)

Line 3-5: runs in O(dn)

Total running time: O(d lgd + lgn + dn)

References

[1] Cormen, Thomas. H., Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to
Algorithms, Second Edition. MIT Press, Cambridge, MA, 2009.

[2] http://student.csuci.edu/ douglas.holmes253/Assignment7.html

