
September 10, 2012
Fall 2012

Comp 510-Algorithms Janeth Moran Cervantes
Assignment 1

Chapter 15:

Matrix Chain Multiplication,

Bitonic Traveling Salesman Problem,

and Printing Neatly

(a) Matrix Chain Multiplication

15.2-1) Find an optimal parenthesization of a matrix-chain product whose sequence of dimen-
sion is: (5, 10, 3, 12, 5, 50, 6)
Solution:

A1 A2 A3 A4 A5 A6

150 360 180 3000 1500

330 330 930 1860

405 2430 1770

1655 1950

2010

Definition 1 The minimum cost of parenthesizing the product AiAi+1 · · ·Aj becomes

m[i, j] =

{
0 if i = j

min
i≤k<j

{m[i, k] + m[k + 1, j] + pi−1pkpj} if i < j

• m[1, 2] = min
1≤k<2

{m[1, k] + m[k + 1, 2] + p0pkp2}

= min
k=1
{m[1, 1] + m[2, 2] + p0p1p2 = 0 + 0 + 5 · 10 · 3 = 150

1

September 10, 2012
Fall 2012

Comp 510-Algorithms Janeth Moran Cervantes
Assignment 1

• m[2, 3] = min
2≤k<3

{m[2, k] + m[k + 1, 3] + p1pkp3}

= min
k=2
{m[2, 2] + m[3, 3] + p1p2p3 = 0 + 0 + 10 · 3 · 12 = 360

• m[3, 4] = min
3≤k<4

{m[3, k] + m[k + 1, 4] + p2pkp4}

= min
k=3
{m[3, 3] + m[4, 4] + p2p3p4 = 0 + 0 + 3 · 12 · 5 = 180

• m[4, 5] = min
4≤k<5

{m[4, k] + m[k + 1, 5] + p3pkp5}

= min k = 4 {m[4, 4] + m[5, 5] + p3p4p5 = 0 + 0 + 12 · 5 · 50 = 3000

• m[5, 6] = min
5≤k<6

{m[5, k] + m[k + 1, 6] + p4pkp6}

= min
k=5
{m[5, 5] + m[6, 6] + p4p5p6 = 0 + 0 + 5 · 50 · 6 = 1500

• m[1, 3] = min
1≤k<3

{m[1, k] + m[k + 1, 3] + p0pkp3}

= min
1≤k<3

{
k = 1 {m[1, 1] + m[2, 3] + p0p1p3 = 0 + 360 + 5 · 10 · 12 = 960
k = 2 {m[1, 2] + m[3, 3] + p0p2p3 = 150 + 0 + 5 · 3 · 12 = 330

}
= 330.

• m[2, 4] = min
2≤k<4

{m[2, k] + m[k + 1, 4] + p1pkp4}

= min
2≤k<4

{
k = 2 {m[2, 2] + m[3, 4] + p1p2p4 = 0 + 180 + 10 · 3 · 5 = 330
k = 3 {m[2, 3] + m[3, 4] + p1p3p4 = 360 + 0 + 10 · 12 · 5 = 960

}
= 330.

• m[3, 5] = min
3≤k<5

{m[3, k] + m[k + 1, 5] + p2pkp5}

= min
3≤k<5

{
k = 3 {m[3, 3] + m[4, 5] + p2p3p5 = 0 + 3000 + 3 · 12 · 50 = 4800
k = 4 {m[3, 4] + m[5, 5] + p2p4p5 = 180 + 0 + 3 · 5 · 50 = 930

}
= 930.

• m[4, 6] = min
4≤k<6

{m[4, k] + m[k + 1, 6] + p3pkp6}

= min
3≤k<5

{
k = 4 {m[4, 4] + m[4, 6] + p3p4p6 = 0 + 1500 + 12 · 5 · 6 = 1860
k = 5 {m[4, 5] + m[6, 6] + p3p5p6 = 180 + 0 + 12 · 50 · 6 = 6600

}
= 1860.

• m[1, 4] = min
1≤k<4

{m[1, k] + m[k + 1, 4] + p0pkp4}

= min
1≤k<4


k = 1 {m[1, 1] + m[2, 4] + p0p1p4 = 0 + 330 + 5 · 10 · 5 = 580
k = 2 {m[1, 2] + m[3, 4] + p0p2p4 = 150 + 180 + 5 · 3 · 5 = 405
k = 3 {m[1, 3] + m[4, 4] + p0p3p4 = 330 + 0 + 5 · 12 · 5 = 630

 = 405.

• m[2, 5] = min
2≤k<5

{m[2, k] + m[k + 1, 5] + p1pkp5}

= min
2≤k<5


k = 2 {m[2, 2] + m[3, 5] + p1p2p5 = 0 + 930 + 10 · 3 · 50 = 2430
k = 3 {m[2, 3] + m[4, 5] + p1p3p5 = 360 + 3000 + 10 · 12 · 50 = 9360
k = 4 {m[2, 4] + m[5, 5] + p1p4p5 = 330 + 0 + 10 · 5 · 50 = 2830

 = 2430.

• m[3, 6] = min
3≤k<6

{m[3, k] + m[k + 1, 6] + p3pkp6}

= min
3≤k<6


k = 3 {m[3, 3] + m[4, 6] + p2p3p6 = 0 + 1860 + 3 · 12 · 6 = 2076
k = 4 {m[3, 4] + m[5, 6] + p2p4p6 = 180 + 1500 + 3 · 5 · 6 = 1770
k = 5 {m[3, 5] + m[6, 6] + p2p5p6 = 930 + 0 + 13 · 50 · 6 = 1830

 = 1770.

2

September 10, 2012
Fall 2012

Comp 510-Algorithms Janeth Moran Cervantes
Assignment 1

• m[1, 5] = min
1≤k<5

{m[1, k] + m[k + 1, 5] + p0pkp5}

= min
1≤k<5


k = 1 {m[1, 1] + m[2, 5] + p0p1p5 = 0 + 2430 + 5 · 10 · 50 = 4930
k = 2 {m[1, 2] + m[3, 5] + p0p2p5 = 150 + 930 + 5 · 3 · 50 = 1830
k = 3 {m[1, 3] + m[4, 5] + p0p3p5 = 330 + 3000 + 5 · 12 · 50 = 6330
k = 4 {m[1, 4] + m[5, 5] + p0p4p5 = 405 + 0 + 5 · 5 · 50 = 1655

 = 1655.

• m[2, 6] = min
2≤k<6

{m[2, k] + m[k + 1, 6] + p1pkp6}

= min
2≤k<6


k = 2 {m[2, 2] + m[3, 6] + p1p2p6 = 0 + 1770 + 10 · 3 · 6 = 1950
k = 3 {m[2, 3] + m[4, 6] + p1p3p6 = 360 + 1860 + 10 · 12 · 6 = 2940
k = 4 {m[2, 4] + m[5, 6] + p1p4p6 = 330 + 1500 + 10 · 15 · 6 = 2130
k = 5 {m[2, 5] + m[6, 6] + p1p5p6 = 2430 + 0 + 10 · 50 · 6 = 5430

 = 1950.

• m[1, 6] = min
1≤k<6

{m[1, k] + m[k + 1, 6] + p0pkp6}

= min
1≤k<6


k = 1 {m[1, 1] + m[2, 6] + p0p1p6 = 0 + 1950 + 5 · 10 · 6 = 2250
k = 2 {m[1, 2] + m[3, 6] + p0p2p6 = 150 + 1770 + 5 · 3 · 6 = 2010
k = 3 {m[1, 3] + m[4, 6] + p0p3p6 = 330 + 1860 + 5 · 12 · 6 = 2550
k = 4 {m[1, 4] + m[5, 6] + p0p4p6 = 405 + 1500 + 5 · 5 · 6 = 2055
k = 5 {m[1, 5] + m[6, 6] + p0p5p6 = 1655 + 0 + 5 · 50 · 6 = 3155

 = 2010.

multiplication sequence:
s[1,6]=2 (A1A2)(A3A4A5A6)
s[3,6]=4 (A1A2)((A3A4) (A5A6))

optimal parenthesization of the matrix-chain product: ((A1A2)((A3A4) (A5A6)))

15.2-2) Give a recursive algorithm MATRIX-CHAIN-MULTIPLY(A,s,i,j) that actually per-
forms the optimal matrix -chain multiplication, given the sequence of matrices (A1, A2, ..., An),
the s table computed by MATRIX-CHAIN-ORDER, and the indices i and j. (The initial
call would be MATRIX-CHAIN-MULTIPLY(A,s,1,n)).

Solution:
MATRIX-CHAIN-MULTIPLY(A, s, i, j)
{

if(i<j)
{

X= MATRIX-CHAIN-MULTIPLY(A, s, i, s[i,j]);
Y= MATRIX-CHAIN-MULTIPLY(A, s, s[i,j]+1, j);
return X ∗ Y;

}
else

return A[i];
}

where A is the array containing A1, A2, ..., An,
s is an n x n array such that s[i,j]=k for m[i, j] = m[i, k] + m[k + 1, j] + pi−1pkpj ,
and X ∗ Y denotes matrix multiplication

3

September 10, 2012
Fall 2012

Comp 510-Algorithms Janeth Moran Cervantes
Assignment 1

(b) Bitonic Traveling Salesman Problem

15-1) Describe an O(n2)-time algorithm for determining the optimal bitonic tour. You may
assume that no two points have the same x-coordinate. Hint: scan left to right, maintain-
ing optimal possibilities for the two parts of the tour

Solution: Let {p1, p2, p3, . . . , pn} be a set of points on a cartesian plane. A tour is a
cycle where p1, p2, . . . , and pn are all part of the cycle. That is, “it is a simple path with
no repeated vertices or edges other than the starting and ending vertices” (Wikipedia).
A tour is bitonic if the path starting from the left most point, moves strictly from left
to right back to the rightmost point and then strictly from right to left. A bitonic tour
is said to be optimal if it is a bitonic tour of minimal length. Let pi = (xi, yi), n be
the number of points to be connected on the plane and p1, p2, . . . , pn be the list of points
sorted in ascending order according to their x-coordinate.

Claim 1: pn and pn−1 are neighbors in any bitonic tour containing points p1, p2, . . . , pn.
Proof: Assume pn−1 is not a neighbor of pn. Let pi and pj be the two neighbors of pn.
Then, the points must be visited in the order pi, pn, pj , pn−1. The path pi pn moves
from left to right, the path pn pj moves from right to left, and the path pj pn−1
moves from left to right. Thus, this tour is not bitonic. Therefore, pn and pn−1 are neigh-
bors in any bitonic tour containing points p1, p2, . . . , pn.

Necessarily, a minimal bitonic tour must contain edge pn−1pn. Let P be a minimal bitonic
path from pn−1 to pn obtained by removing the edge pn−1pn. Since pn−1pn exists in any
bitonic tour, finding the minimal bitonic tour from pn−1 to pn is equivalent to finding
the minimal bitonic path from pn−1 to pn. Note that the bitonic path, P , visits points
p1, p2, . . . , pn. Let bk be the neighbor of pn. By removing pn, we are left with the minimal
bitonic path P ′ that visits p1, p2, . . . , pk, . . . , pn−1.

Claim 2: The minimal bitonic path has an optimal substructure. (A minimal bitonic
path containing points p1, p2, . . . , pn. contains a minimal bitonic subpath containing points
p1, p2, . . . , pn−1)
Proof: let P be the minimal bitonic path with endpoints pi and pj with i < j. Let pk be
a neighbor of pj . Then the path P ′ obtained by removing pj from P is a normal bitonic
path with endpoints pi and pk. Necessarily, pj−1 ∈ {pi, pk}.

Proof: Assume pj−1 /∈ {pi, pk}
=⇒ path pipj−1pkpj (pk and pj are neighbors and pi and pj are endpoints).
=⇒ pi pj−1 moves from left to right because i < j − 1 < j and i 6= j − 1,

pj−1 pk moves from right to left because k < j − 1 < j, and
pk pj moves from left to right because k < j

=⇒ the path pipj−1pkpj is not bitonic. This is a contradiction and thus,
pj−1 ∈ {pi, pk}.

Path P ′ is the minimal bitonic path containing points p1, p2 . . . , pj−1.

Proof: Assume P ′ is not a minimal bitonic path. Then there exists a shorter
bitonic path, P ′′, with endpoints pi to pk. We can construct P ′′′, a path from pi
to pj by appending pkpj to P ′′. Note that P is a minimal bitonic path from pi to
pj . We assumed that P ′′ is shorter than P ′

4

September 10, 2012
Fall 2012

Comp 510-Algorithms Janeth Moran Cervantes
Assignment 1

=⇒ `(P ′′) < `(P ′)
=⇒ `(P ′′) + ||pkpj || < `(P ′) + ||pkpj ||
=⇒ `(P ′′′) = `(P ′′) + ||pkpj || < `(P ′) + ||pkpj || = `(P)

=⇒ `(P ′′′) < `(P)
This is a contradiction because P is a minimal bitonic path.
Therefore, @ a shorter normal bitonic path with endpoints pi and pj different from
P ′. Thus, P ′ is the minimall bitonic subpath with endpoints pi and pk from path
P with endpoints pi and pj where pj−1 ∈ {pi, pk}.
∴ the minimal bitomic path has an optimal substructure.

We now have two cases. From the previous claim, pj−1 ∈ {pi, pk}
case 1: if j − 1 6= i, then j − 1 = k
case 2: if j − 1 = i, then 1 ≤ k < i

Claim 3: Let `(i, j) be the length of the bitonic path with endpoints pi and pj where
i < j and let k be a neighbor of pj . Then the following is true:

`(i, j) =


||p1p2|| i = 1, j = 2

`(i, j − 1) + ||pj−1pj || i < j − 1

min
1≤k<i

{`(k, i) + ||pkpj ||} i = j − 1

Proof:
• The minimal bitonic path with endpoints p1 and p2 only visits two points, necessarily

p1 and p2. Thus, for the path to be simple, it must consist of the only edge between
p1 and p2.

• From case 1, we have the minimal bitonic path pi pk=j−1 → pj . This implies
that `(i, j) must be equal to the length of the minimal bitonic path from pi to pj−1,
`(i, j − 1), plus the length of the edge pj−1pj .

• From case 2, since 1 ≤ k < i, we have the minimal bitonic path pi=j−1 pk → pj .
This means `(i, j) must be equal to the length of the minimal bitonic path from pi
to pk, `(i, k), plus the length of the edge pkpj . However, 1 ≤ k < i. Necessarily,
`(i, j) = `(k, i) + ||pkpj || for the value k that yields the shortest value. Thus, the
optimal bitonic path from pi to pj is the minimum of the lengths for 1 ≤ k < i.

To compute `(n−1, n), we must compute the length of the optimal bitonic subpaths. This
requires a dynamic programming bottom up approach using the formula in claim three,
where we begin with `(1, 2), `(1, 3), . . . , `(n− 1, n).

Claim 4: The dynamic programming algorithm for computing the shortest bitonic tour
is an O(n2) time algorithm.
Proof: The following values will be computed:

5

September 10, 2012
Fall 2012

Comp 510-Algorithms Janeth Moran Cervantes
Assignment 1

`(1, 2)
`(1, 3) `(2, 3)
`(1, 4) `(2, 4) `(3, 4)
`(1, 5) `(2, 5) `(3, 5) `(4, 5)
`(1, 6) `(2, 6) `(3, 6) `(4, 6) `(5, 7)
...

...
...

...
...

`(1, n− 1) `(2, n− 1) `(3, n− 1) `(4, n− 1) `(5, n− 1) . . . `(n− 2, n− 1)
`(1, n) `(2, n) `(3, n) `(4, n) `(5, n) . . . `(n− 2, n) `(n− 1, n)

n− 1 n− 2 n− 3 n− 4 n− 5 . . . 2 1

Assume that all operations on real numbers take unit time. Since all calculations are done
using lengths of bitonic subpaths, which only requires a simple table lookup, `(i, j) = 1.
The running time is equivalent to

n− 1 + n− 2 + n− 3 + n− 4 + n− 5 + . . . + 2 + 1 =
n−1∑
1

i = 1
2n · (1 + n− 1) = n(n−1)

2

=⇒ O(n2)
The set of points can be sorted in O(n log n). The total running time is then O(n2) +
O(n log n) = O(n2) �

(c) Printing Neatly

15-2) Give a dynamic programming algorithm to print a paragraph of n words neatly on a
printer. Analyze the runtime and space requirements for your algorithm.

Solution:
Assume a monospaced font (all characters having the same width). The input text is a
sequence of n words of length l1, l2, ..., ln measured in characters. We want to print this
paragraph neatly on a number of lines that hold a maximum of M characters each.

Printing n number of words can be accomplished in a greedy manner by compressing as
many words (seperated by a single space) in the first line before moving on to the next,
and doing the same for the proceeding lines until the last word has been reached. This
solution presents the problem of “unneatness” (long words may cause a larger number of
spaces at the end of the lines, making the paragraph look ragged). Printing neatly can
thus be accomplished by “redistributing the number of spaces at the end of each line as
evenly as possible”. To do this, we focus on printing as many words on each line while
minimizing the number of white spaces left over at the end of each line. We must therefore
define a cost to each line associated with the number of spaces left over at the end of the
line. Let this cost be the cube of the number of white spaces left over. It does not matter
how many spaces the last line has so we define the cost of the last line as zero. To print
neatly, we must find the optimal (minimum) sum of costs of all lines.

• Let si =
i∑

k=1

lk for i ≤ j, then sj − si =
j∑

k=i

lk. We can compute s1, s2, ..., sn in O(n).

The number of extra white spaces left at the end of the line containing words i through

j is M − (j − i) −
j∑

k=i

lk = M − j + i − sj + si. Thus, the cost incurred by a line

6

September 10, 2012
Fall 2012

Comp 510-Algorithms Janeth Moran Cervantes
Assignment 1

containing words i through j is given by:

lineCost(i, j) =


0 j = n, and 0 ≤M − j + i− sj + si
(M − j + i− sj + si)

3 0 ≤M − j + i− sj + si
∞ otherwise

This can be computed in constant time, O(1), since si and sj have already been com-
puted.

• Let C(n) be the optimal cost of printing words 1 through n neatly. If all the words fit
on one line, the cost C(n) = lineCost(1, n) = 0. Otherwise, let the last line contain
words i through n. Then the cost of printing n words is equal to the cost of printing
the first i− 1 words plus cost of printing the words on the last line. Each line holds a
maximum of M characters and each word of length l is separated by a space. Thus,
any line can hold a maximum of M

2 words. The last line can thus hold up to words
i = j − M

2 to j. We can then summarize the cost to print the first j words as:

C(j) =

{
min

1≤j−M
2
≤i≤j

C(i− 1) + lineCost(i, j)

• We can compute C(n) using a “bottom up” approach by computting C(1), C(2),
C(3), ... , C(n) and saving the i for which C(j) is miniminum to Lj . That is Lj is
the index of the first word of the line that ends with letter j. Since a line contains
a maximum of M

2 words and we must compute lineCost for any number of words
that fit on the last line, it takes O(M2) to compute C(j), j ∈ {1, 2, .., n}. Since we
must compute for all j ∈ {1, 2, ..., n}, the running time to compute C(n) is thus
O(M2 n) + O(n) + O(1) = O(Mn).

• We need space for s1, s2, ..., sn , L1, L2, .., Ln and C1, C2, ..., Cn =⇒ space required
is O(3n) = O(n).

• PRINT-NEATLY(l, n, M)

1. C(0) = 0, si = 0

2. for i = 1, ..., n
si = si + li

3. for j=1,...,n
C(j) = min

1≤j−M
2
≤i≤j

{C(i− 1) + lineCost(i, j)

(k = i for which C(j) is minimum)
Lj = k

4. return L

• Lj contains the index of the first word of the line that ends with the jth word. We
can transverse backwards to neatly print words 1 through n starting with Ln.

References

[1] Cormen, Thomas. H., Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to
Algorithms, Third Edition. MIT Press, Cambridge, MA, 2009.

7

September 10, 2012
Fall 2012

Comp 510-Algorithms Janeth Moran Cervantes
Assignment 1

[2] http://www.cs.ust.hk/∼dekai/271/notes/L12/L12.pdf

[3] http://www.cs.huji.ac.il/course/2004/algo/Solutions/bitonic.pdf

[4] http://www.csee.umbc.edu/ kalpakis/Courses/441-sp03/hws/hw5-sol.pdf

8

